每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去。

你知道存在楼层 F ,满足 0 <= F <= N 任何从高于 F 的楼层落下的鸡蛋都会碎,从 F 楼层或比它低的楼层落下的鸡蛋都不会破。

每次移动,你可以取一个鸡蛋(如果你有完整的鸡蛋)并把它从任一楼层 X 扔下(满足 1 <= X <= N)。

你的目标是确切地知道 F 的值是多少。

无论 F 的初始值如何,你确定 F 的值的最小移动次数是多少?

因此,在最坏的情况下我们需要移动 2 次以确定 F 是多少。

从多少楼层多少个蛋最少要扔几次,转变为有多少个蛋扔几次可以测试出多少楼层。

上面的方法的思路,都还是顺着题目的思路的进行的,其实我们可以换一个思路来想:“求k个鸡蛋在m步内可以测出多少层”。我们令dp [k] [m]表示k个鸡蛋在m步内可以测出的最多的层数,那么当我们在第X层扔鸡蛋的时候,就有两种情况:

鸡蛋碎了,我们少了一颗鸡蛋,也用掉了一步,此时测出N - X + dp [k-1] [m-1]层,X和它上面的N-X层已经通过这次扔鸡蛋确定大于F; 鸡蛋没碎,鸡蛋的数量没有变,但是用掉了一步,剩余X + dp [k] [m-1],X层及其以下已经通过这次扔鸡蛋确定不会大于F; 也就是说,我们每一次扔鸡蛋,不仅仅确定了下一次扔鸡蛋的楼层的方向,也确定了另一半楼层与F的大小关系,所以在下面的关键代码中,使用的不再是max,而是加法(这里是重点)。评论里有人问到为什么是相加,其实这里有一个惯性思维的误区,上面的诸多解法中,往往求max的思路是“两种方式中较大的那一个结果”,其实这里的相加,不是鸡蛋碎了和没碎两种情况的相加,而是“本次扔之后可能测出来的层数 + 本次扔之前已经测出来的层数”。

假设我们有 k 个鸡蛋可以移动 m 步,考虑某一步 t 应该在哪一层丢鸡蛋?一个正确的选择是在 dp [k-1] [t-1] + 1 层丢鸡蛋,结果分两种情况:

如果鸡蛋碎了,我们首先排除了该层以上的所有楼层(不管这个楼有多高),而对于剩下的 dp [k-1] [t-1] 层楼,我们一定能用 k-1 个鸡蛋在 t-1 步内求解。因此这种情况下,我们总共可以求解无限高的楼层。可见,这是一种非常好的情况,但并不总是发生。

容易想象,在所有 m 步中只要有一次出现了第一种情况,那么我们就可以求解无限高的楼层。但“保证求解”的定义要求我们排除一切运气成分,因此我们只得认为每次移动都遇到第二种情况。于是得到递推公式: