概率分布
本文主要对于交叉熵的手动计算和PyTorch中的CrossEntropyLoss模块计算结果不一致的问题展开讨论,查阅了PyTorch的官方文档,最终发现是CrossEntropyLoss在计算交叉熵之前会对输入的概率分布进行一次SoftMax操作导致的。 在强化学习中,策略学习常用到一个损失函数为l=−lnπθ(a∣s)⋅gl=-\ln\pi_\theta(a|s)\cdot gl=−lnπθ(a∣s)⋅g,其中πθ\pi_\thetaπθ在状态sss下是关于动作的一个概率分布,而动作aaa是经验中记录的,在状态sss下选择的确定动作。因此有: 因此,该损失函数便被转换为了计算两个概率分布之间交叉熵的计算形式
《程序员的数学2:概率统计》沿袭《程序员的数学》平易近人的风格,用通俗的语言和具体的图表深入讲解程序员必须掌握的各类概率统计知识,例证丰富,讲解明晰,且提供了大量扩展内容,引导读者进一步深入学习。 《程序员的数学2:概率统计》涉及随机变量、贝叶斯公式、离散值和连续值的概率分布、协方差矩阵、多元正态分布、估计与检验理论、伪随机数以及概率论的各类应用,适合程序设计人员与数学爱好者阅读,也可作为高中或大学非数学专业学生的概率论入门读物。 平冈和幸(作者), 数理工程学博士,对机器学习兴趣浓厚
信息熵是一种信息不确定性的度量,而两个随机变量分布匹配程度的度量可以使用KL散度。 KL散度是两个概率分布$P$和$Q$差别的非对称性的度量。 KL散度是用来度量使用基于$Q$的编码来编码来自P的样本平均所需的额外的比特个数
整个在PMP考试中需要你去关注计算的地方其实比较少。影响图,是说将项目中的一个情景表现为一种实体结果或影响,把们进的这样一个关系给展现出来,相互影响的关系。 概率分布的方式来去呈现这样一个风险的事
度与斜率完全负相关时对ξ>0应的完全负相关的斜率值.ξ<0局地极大值附近只有“由上而下”的交点。图2给出了当参数T=100相关系数的绝对值|ρ|分别取值00.5和1此时第1个(实线)和第2个(虚线)返回脉冲传播时间的概率分布及其PDF的数值结果。通过以上分析及数值结果可....以看出界面高度与斜率的相关性对背向散射脉冲传播时间统计特性的影响:当参数T一定随机界面第1个和第2个返回的背向散射脉冲传播时间的概率分布及PDF仅与高度与斜率相关系数的绝对值有关;当界面高度与斜率相关系数取不同值时第1个和第2个返回的背向散射脉冲传播时间的概率分布及PDF有显著的变化
性能测试规划中的第三步是定义测试。如前所述,对于各种服务和功能来说,可以执行的测试种类有很多。如果要把它们全部运行一-遍,可能你永远也不能发布任何产品了
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等
疲劳科学专家。1928年11月15日生于北京,原籍江西都昌。1950年毕业于北洋大学航空系
自然语言处理是 AI 皇冠上的明珠,而语料预处理是自然语言处理的基础。 机器能跟人类交流吗?能像人类一样理解文本吗?这是大家对人工智能最初的想象。如今,NLP 技术可以充当人类和机器之间沟通的桥梁
之前整理过线性回归是从频率统计的角度来解释的,本文通过贝叶斯学派的观点重新解释一下线性回归模型。我们使用概率分布而非点估计来构建线性回归,因变量 $y$ 不是被估计的单个值,而是假设从一个分布中提取而来。贝叶斯线性回归模型如下: 输出 $y$ 是由均值和方差两个特征刻画的正态分布,这两个值都可以通过数据求得