recognition
NVIDIA Jetson Inference 机器学习项目是一个 Hello AI World 类演示教程,提供了三种最常见的AI应用于计算机视觉的类型,imagenet用于图像识别(Image Recognition)、detectNet用于对象检测(Object Detection)、segNet用于语义分割(Semantic Segmentation)。 jetson-inference 图像识别模型采用 ILSVRC ImageNet 数据集,自动生成识别结果的图片。 深度学习的训练和推理流程,是先采用高性能图形服务器使用深度学习框架来训练(Training)机器学习算法,研究大量的数据来学习一个特定的场景,完成后得到模型参数,再部署到终端执行机器学习推理(Inference),以训练好的模型从新数据中得出结论
NVIDIA Jetson Inference 机器学习项目是一个 Hello AI World 类演示教程,提供了三种最常见的AI应用于计算机视觉的类型,imagenet用于图像识别(Image Recognition)、detectNet用于对象检测(Object Detection)、segNet用于语义分割(Semantic Segmentation)。 jetson-inference 图像识别模型采用 ILSVRC ImageNet 数据集,自动生成识别结果的图片。 深度学习的训练和推理流程,是先采用高性能图形服务器使用深度学习框架来训练(Training)机器学习算法,研究大量的数据来学习一个特定的场景,完成后得到模型参数,再部署到终端执行机器学习推理(Inference),以训练好的模型从新数据中得出结论
11月15日,受第14届国际文档分析与识别大会 (International Conference on Document Analysis and Recognition ICDAR 2017)邀请,电信学院白翔教授在大会上做了名为“Deep Neural Network for Scene Text Reading Revisited”的特邀报告(Keynote Speech)。在长达一个小时的报告中,白翔教授简要总结了近年来自然场景文本检测与识别这一热点研究方向的发展及现状,介绍了其研究团队结合深度学习在此领域所取得的重要研究方法及相关应用技术,并对该方向的发展趋势做出了全面展望。白翔教授的报告内容丰富,深入浅出,赢得了参会学者的广泛赞誉
人脸识别技术是包括人脸检测和人脸身份认证技术在内的识别技术,人脸检测是根据所获得视频或者图片信息,利用图像处理和计算机视觉相关算法,从图像中判断是否有人脸,并给出存在人脸的数量和位置,更进一步的是通过脸与脸的匹配识别人脸的身份。 本文在人脸特征提取中,采用基于卷积神经神经网络的提取算法来对人脸的特征进行特征提取,其次结合支持矢量基算法来对人脸进行分类。人脸识别系统主要分为人脸样本特征训练过程和人脸识别分类两大部分
厉害了我的哥,人脸面部识别新技术:无脸识别! 人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统
华南理工大学机器学习与数据挖掘实验室是华南理工大学计算机科学与工程学院的下属实验室,有教授2人(博士导师2人)、副教授3人,具有博士学位5人,博士生5人,硕士生20余人。实验室主要从事认知科学与情感计算、知识库、神经网络、半监督学习、聚类集成等算法和模型构造,在此方面积累了较丰富的经验,具备了较好研究基础。 在学术研究方面,已经发表学术论文300多篇,其中SCI/EI收录200多篇,发表的会议和刊物包括了ICML、IJCAI、KDD、ICDM和Pattern Recognition、IEEE Transactions on Evolutionary Computation、Bioinformatics 等国际著名期刊,以及国内一级学报等