neural
为解决非理想条件下的表面肌电稳定识别
为解决非理想条件下的表面肌电稳定识别,如新动作、肌肉疲劳与电极偏移等干扰,中国科学院沈阳自动化研究所研究员赵新刚团队提出了一种自适应混合分类器。相关成果发表在Ieee Transactions on Neural Systems and Rehabilitation Engineering上。 在非理想条件下的表面肌电识别方面,针对日常十个动作的分类,该团队实现了92%的准确率,远高于前人研究
11月15日,受第14届国际文档分析与识别大会 intern
11月15日,受第14届国际文档分析与识别大会 (International Conference on Document Analysis and Recognition ICDAR 2017)邀请,电信学院白翔教授在大会上做了名为“Deep Neural Network for Scene Text Reading Revisited”的特邀报告(Keynote Speech)。在长达一个小时的报告中,白翔教授简要总结了近年来自然场景文本检测与识别这一热点研究方向的发展及现状,介绍了其研究团队结合深度学习在此领域所取得的重要研究方法及相关应用技术,并对该方向的发展趋势做出了全面展望。白翔教授的报告内容丰富,深入浅出,赢得了参会学者的广泛赞誉