定义域
想必大家都知道的组合数在正整数上有: 但很少有人知道这个公式在实数领域上也是成立的: 为什么我不继续化简了呢? 如果你是一个思维严谨的读者,当你看到了我放入的伽马函数图像的时候,你就应该对我的博客提出质疑, 我曾经说n!在整个实数领域有意义,又说$x!=\gamma(x+1)$ 然而我给出的伽马函数的定义域明显不包含负整数和0, 不管读者如何想,至少我自己认为,如果给要给负数定义一个阶乘的值,依据伽马函数在对应的点的极限为∞, 数学总是这样,如果我非得让这个式子可以运算,将对很多其他数学定理有很大的影响,而不是那些数学家们不愿意在数学界给出新的运算。给出新的运算就得付出代价。 数学界用这样一种方法来回避这样的问题,重新定义组合数,而不是引入新的运算
不等式的证明,方法灵活多样,它可以和很多内容结合。高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式
函数f(x)=2 的定义域是________. 已知函数 ,其中 ,函数 图像上相邻的两个对称中心之间的距离为 ,且在 处取到最小值 . (2)若将函数 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)再将向左平移 个单位,得到函数 图象,求函数 的单调递增区间。 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列 的等和数列,且 ,公和为5,那么 的值为__________. 函数 ,该函数的最大值是25,求该函数取最大值时自变量x的值.
可以考虑简单学习网,简单学习网高中数学辅导一对一,专注中学课程,汇聚专业优质师资讲课,针对基础不扎实、成绩不稳定、想冲刺高考的学员快速提升成绩,稳固分数,考入理想名校! 哪些技巧? 这些知识点在必修一的第一章中都有,关键是我们能否真正理解其概念,这是最基础的一步,因为后面无论学到那种函数,都离不开这些知识点。 比如在求抽象函数的定义域时,在同一对应关系f下,括号内整体的取值范围相同。 比如在求函数的值域,应先确定定义域,树立定义域优先原则,再根据具体情况求y的取值范围
我们在绘制地图的时候,我们会提及到比例尺,代表的含义就是,地图上的1厘米代表着实际空间的几千米。 图表中的比例尺,其代表的含义就是,我们知道对应的数值,然后按比例尺换算成图表中对应的高度或者宽度。 我们设 比例尺函数为scale,上图中的高度(H)为8份,数值(NUM)范围0~160000
不等式的证明,方法灵活多样,它可以和很多内容结合。高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式
函数公式网 数学函数 函数究竟是什么?高中生应该如何真正理解函数的定义? 函数究竟是什么?高中生应该如何真正理解函数的定义? 最近我问了一个高三的学生什么是函数?他想了半天说:函数就是函数啊,一个量随着另一个量变化而变化啊。 这位同学说的当然也没有错,但总感觉少了点味道。首先这种一个量随另一个量变化的动态描述法是函数的传统定义
想必大家都知道的组合数在正整数上有: 但很少有人知道这个公式在实数领域上也是成立的: 为什么我不继续化简了呢? 如果你是一个思维严谨的读者,当你看到了我放入的伽马函数图像的时候,你就应该对我的博客提出质疑, 我曾经说n!在整个实数领域有意义,又说$x!=\gamma(x+1)$ 然而我给出的伽马函数的定义域明显不包含负整数和0, 不管读者如何想,至少我自己认为,如果给要给负数定义一个阶乘的值,依据伽马函数在对应的点的极限为∞, 数学总是这样,如果我非得让这个式子可以运算,将对很多其他数学定理有很大的影响,而不是那些数学家们不愿意在数学界给出新的运算。给出新的运算就得付出代价。 数学界用这样一种方法来回避这样的问题,重新定义组合数,而不是引入新的运算
1、三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边,正切等于对边比邻边。 2、通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域
老黄学高数学系列视频第210讲讲的是画函数图的一般步骤。 为了巩固这方面的知识,老黄举了一些各种函数的例子,加强画函数图像的能力。 这次 Huang 选择了一个带部首的函数