连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的(或者说具有不连续性)。

对函数连续性的严格定义需要用到极限的概念。我们学习了极限的概念后,已经拥有了定义何为连续函数的知识基础。首先我们定义函数在一点上的连续性:

定义(函数在一点的连续性)

这三个条件缺一不可。如果函数不满足其中的一个或多个条件,就称这一点为函数 f {\displaystyle f} 的间断点。

从定义上来看,函数在一点的连续性是函数的一个局部性质。我们还可以定义函数在区间上的连续性:

定义(函数在开区间上的连续性)

如果函数在整个实数轴上都连续或在自己的定义域上连续,我们简称函数是连续函数。初等函数在定义域上连续,所以我们称初等函数都是连续函数。

函数的间断点,也就是不连续的点。间断点有很多种类,实数轴上的函数的间断点大致可以分为四类。

可去间断点[编辑]

可去间断点,函数在红点处无定义,但只要将红点处补上,就是连续函数。

跳跃间断点指的是函数在某一点的左极限和右极限都存在并有限,但两者不相等。这时候函数在这一点可以是有定义,也可以是无定义,但无论这一点的函数值为何,都无法使得函数连续。比如右图中的阶梯函数 k ( x ) {\displaystyle k(x)} :

无穷型间断点[编辑]

无穷型间断点指的是函数在某一点附近趋于无穷大,或者仅仅在某一侧趋于无穷大,这时候函数的间断点同样无法用“补上一点”的方法去掉。在 0 {\displaystyle 0} 点左侧的极限是负无穷大,右极限是正无穷大。无穷型间断点可以看做是跳跃间断点的特殊的一种。

无极限间断点[编辑]

除了第一类间断点外,另外三类间断点都是不可去的。把函数所有可去间断点“去掉”后得到的新函数叫做函数的拓延。

和单侧极限类似,我们也可以定义函数在某一点的单侧连续性。函数在一点左(右)连续,如果它在这一点的左(右)极限等于它在这一点的值。和单侧极限的性质类似,函数在某一点连续,当且仅当函数在某一点左连续而且右连续。

定义了单侧连续之后,我们就可以定义函数在闭区间上的连续性。

定义(函数在闭区间上的连续性)

连续的函数有许多良好的性质,可以帮助我们解决许多问题。

介值定理描述了连续函数的值域,是一个很有用的定理: