的积分方程,依次称为第一种弗雷德霍姆积分方程和第二种弗雷德霍姆积分方程,其中λ 是参数,φ(x)是未知函数,核K(x,y)和自由项 ƒ(x)是预先给定的函数。通常假设 K(x,y)属于平方绝对可积函数类,记 ,B是非负数。当ƒ(x)恒为零时,称为齐次积分方程,否则称为非齐次积分方程。
E.I.弗雷德霍姆给出了一般情形的解核构造法。设 K(x,y)是有界核,即│K(x,y)│ 0。方程(1)一定存在一组正特征值{λi}和对应的正交标准的相伴特征函数对{φi(x),ψi(x)}。有时也称之为奇值和奇值函数序列。应用它可类似地建立展开定理。施密特指出,方程(1)可解的必要条件是级数 式中ƒi=(ƒ,φ)。以后,(C.-)É.皮卡进而证明,在正交标准特征函数系{φi(x)}是完备的情形,这条件也是充分的。此即所谓施密特-皮卡定理。
对于第一种弗雷德霍姆积分方程的研究,近代有了新的进展,并提供了一些有效的解法,但至今还未建立起系统的理论。
