求函数
(1)求 的值及函数 的最小正周期; 某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h以下的汽车有 辆。 (1)求函数 的最小正周期和单调递增区间; 已知定点 ,过点F且与直线 相切的动圆圆心为点M,记点M的轨迹为曲线E. (1)求曲线E的方程; (2)若点A的坐标为 ,与曲线E相交于B,C两点,直线AB,AC分别交直线 于点S,T.试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由. 函数 相交于A,B两点,且 最小值为 ,则函数 的单调增区间是___________. (1)求函数 的最小正周期和单调递减区间;
复合函数的极限中的条件 g(x)≠u0 为什么很重要? 在同济大学《高等数学》第七版上册中,有求复合函数极限的定理: 设函数是由函数和函数复合而成,若: 可以用一幅图来说明该定理: 在我们课程的答疑群中,不少同学对其中这个条件有疑问。其实不光这个条件,这个定理值得关注的地方挺多的,比如: 下面会用不同的例子来阐述上面条件暗藏的陷阱,不过先图解下复合函数的极限,方便之后的讲解。 其中可以看作,在的去心邻域内,从左右两侧逼近: 而该极限可以直观地、不那么严格地解读为,当沿着从左右两侧逼近,对应的函数值不断逼近极限值: 可以看作,从左右两侧逼近,从而导致从左右两侧逼近,所以最终复合函数值不断逼近极限值,这也是在点的极限: “函数是由函数和函数复合而成”,这里的函数和函数都是一般函数,没有作什么限制
设扇形的半径长为,面积为,则扇形的圆心角的弧度数是________。 函数的最小正周期为________。 函数的图象,则的解析式为________
这几年来,由于互联网的飞速发展以及电商的大量涌入,网购已成为人们习以为常的生活方式。只要打开手机,你就能买到你想要的东西。大量的网购增加了人们对快递的需求,也促进了快递行业的迅速发展
熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求导法则求导数。会求分段函数的导数。 会求隐函数的导数
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑
