mnist
对于AI深度神经网络主要由许多节点层组成的复杂架构,结果导致大量需要在训练中评估的参数,包括权重、偏差等。相比于简单的架构,更大、更复杂的神经网络需要更多的训练数据满足适当的收敛。 最近,在IEEE论文提出如何可以减少少量数据训练神经网络的新方法,其实,主要通过极坐标空间中的径向变换实现图像增强
对于AI深度神经网络主要由许多节点层组成的复杂架构,结果导致大量需要在训练中评估的参数,包括权重、偏差等。相比于简单的架构,更大、更复杂的神经网络需要更多的训练数据满足适当的收敛。 最近,在IEEE论文提出如何可以减少少量数据训练神经网络的新方法,其实,主要通过极坐标空间中的径向变换实现图像增强
中国MNIST数据集使用在纽卡斯尔大学的项目中收集的数据。 项目描述 一百名中国人参加了数据收集。每个参与者用标准的黑色墨水笔在一张白色A4纸上绘制的表格中的15个指定区域书写所有15个数字
目前的神经网络中,每一层的神经元都做的是类似的事情,比如一个卷积层内的每个神经元都做的是一样的卷积操作。而 Hinton 坚信,不同的神经元完全可以关注不同的实体或者属性,比如在一开始就有不同的神经元关注不同的类别(而不是到最后才有归一化分类)。具体来说,有的神经元关注位置、有的关注尺寸、有的关注方向
将训练一个机器学习模型用于预测图片里面的数字. 数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test) 把这些图片设为“xs”,把这些标签设为“ys” 训练数据集的图片是 mnist.train.images ,训练数据集的标签是 mnist.train.labels 可以得到输入图片 x ,[784]的向量,它代表的是数字 i 的证据可以表示: softmax函数可以看成是激励函数(activation),把线性函数输出转换成想要的格式:关于10个数字的概率分布。 结合上面的evidence可以知道,evidence越大,正则化后的结果更大,就是权重更大。 进一步写成:
MNIST手写数字数据库的训练集为60000个示例,测试集为10000个示例。这些数字已进行尺寸规格化,并在固定尺寸的图像中处于居中位置。 对于那些想在实际数据上尝试学习技术和模式识别方法而又不花太多精力进行预处理和格式化的人们来说,这是一个很好的数据库
MNIST手写数字数据库的训练集为60000个示例,测试集为10000个示例。这些数字已进行尺寸规格化,并在固定尺寸的图像中处于居中位置。 对于那些想在实际数据上尝试学习技术和模式识别方法而又不花太多精力进行预处理和格式化的人们来说,这是一个很好的数据库
目前的神经网络中,每一层的神经元都做的是类似的事情,比如一个卷积层内的每个神经元都做的是一样的卷积操作。而 Hinton 坚信,不同的神经元完全可以关注不同的实体或者属性,比如在一开始就有不同的神经元关注不同的类别(而不是到最后才有归一化分类)。具体来说,有的神经元关注位置、有的关注尺寸、有的关注方向
张量网络(tensor networks)越来越多地用于机器学习以执行复杂计算的数学结构,但是它们的广泛采用还存在许多障碍。首先,没有一个免费的可用加速硬件库来大规模运行底层算法;此外,大多数张量网络文献都只面向物理应用。 为了解决这些问题,谷歌正式发布了TensorNetwork 开源库,这是一个由 Perimeter 理论物理研究所和 Google 合作开发的开源库和 API
