zernike
我的理解:
正交多项式可以理解为一组基
我的理解: 正交多项式可以理解为一组基,类比空间中的一组正交基,你可以通过给该正交基加权的方式得到空间中任意一个点,同理,对正交多项式加权就能得到任意一个n维多项式。 比如泰勒展开,任何函数f(x)都能通过幂级数展开的方式得到一个统一的形式,如展开成 \(f(x) = Ax + Bx^2 +Cx^3+Dx^4…\),或使用麦克劳林展开、泰勒展开、傅里叶展开,就可以将\((x x^2x^3x^4…)\)理解为一组基,在它们前面加上不同的权值就能拟合不同的函数,如果将这些不同的权值都取出来作为一个有序集合,那么我就可以认为这个几何就能表示在某种展开方式下的其原函数 若将一个图像看作是一个函数f(xy),其中x,y表示像素点坐标,则该函数也能通过某种展开方式得到一组权值乘以一组基的形式。zernike就想到了一种方法用以展开单位圆内的图像函数,展开之后的这个权值就是zernike矩(前面说了用这个权值其实就可以确定一个f(xy)),这组基就是zernike正交多项式
格罗宁根大学成立于1614年,是欧洲最古老的大学之一
格罗宁根大学成立于1614年,是欧洲最古老的大学之一,在泰晤士(Times)世界大学排名中位于全球第79位。另外,在泰晤士世界大学材料科学研究院的排名中,格罗宁根大学的Zernike研究院名列全球前10,与哈佛大学和麻省理工共享优越的科研资源。 学校所在的格罗宁根市是荷兰第五大城市,是荷兰北部经济、贸易和文化教育中心,历史悠久,经济发达,为学生心目中理想安全的城市