费马平方和定理是由法国数学家皮埃尔·德·费马在1640年提出的一个猜想,但他没有提出有力的数学证明,1747年,瑞士数学家莱昂哈德·欧拉提出证明后成为定理。

欧拉的证明[编辑]

欧拉在1747年证明了费马平方和定理,当年他四十岁。他在当年5月6日寄给哥德巴赫一封信,讲述这个定理的证明。该证明分五步,且用到了无穷递降法;由于信中没有把第五步讲清楚,因此1749年他再次寄给哥德巴赫一封信,详细讲述第五步的证明。

第一步、“如果两个整数都能表示为两个平方数之和,则它们的积也能表示为两个平方数之和。”

第二步、“如果一个能表示为两个平方数之和的整数被另一个能表示为两个平方数之和的素数整除,则它们的商也能表示为两个平方数之和。因此其商能表示为两个平方数之和。

同样可证。

第三步、“如果一个能表示为两个平方数之和的整数被另一个不能表示为两个平方数之和的整数整除,则它们的商也必有一个不能表示为两个平方数之和的因子。如果 x {\displaystyle x} 不能表示为两个平方数之和,则根据第三步的结论,可知必有一个 z {\displaystyle z} 的因子不能表示为两个平方数之和;设它为 w {\displaystyle w} 。于是我们从 x {\displaystyle x} 推出了一个更小的整数 w {\displaystyle w} ,都不能表示为两个平方数之和,但都能被一个能表示为两个平方数之和的整数整除。由于这个无穷递降是不可能的,因此 x {\displaystyle x} 一定能表示为两个平方数之和。