polya
矩阵以及微分算子的特征值问题是理论数学以及科学计算中的基本问
矩阵以及微分算子的特征值问题是理论数学以及科学计算中的基本问题。本报告中将介绍特征值问题的数值分析中的误差估计理论,并着重介绍特征函数的可量化误差估计。当特征值问题的特征值非常接近甚至重合时,对应的特征函数的误差估计是一个病态问题
组合数学主要是研究离散对象满足一定条件的安排的存在性、构造及
组合数学主要是研究离散对象满足一定条件的安排的存在性、构造及计数等问题的学科。该方向主要进行相关理论的研究目前主要有以下领域: 代数组合学:利用代数工具研究组合问题,包括对称多项式理论、群表示理论、杨表理论等。 计数组合学:利用生成函数、Mobius反演、Polya计数定理等研究树的计数、图的计数以及其他特殊集合的计数
周治国主编的《组合数学及应用》属于acm-icpc程序设计竞
周治国主编的《组合数学及应用》属于ACM-ICPC程序设计竞赛数学基础丛书。《组合数学及应用》以程序设计思想和方法为主线,由浅入深地介绍组合数学的基础知识,并以经典的ACM-ICPC竞赛题目为例讲解组合数学在竞赛中的具体应用问题。 全书共分6章,分别介绍了排列组合、母函数、容斥原理与鸽巢原理、群和Polya定理、组合计数与编码、线性规划的基本知识及其应用
