矩阵以及微分算子的特征值问题是理论数学以及科学计算中的基本问题。本报告中将介绍特征值问题的数值分析中的误差估计理论,并着重介绍特征函数的可量化误差估计。当特征值问题的特征值非常接近甚至重合时,对应的特征函数的误差估计是一个病态问题。对此,我们转为考虑特征函数所构成的特征子空间的性状,并提出了两种方法对近似特征子空间进行可量化的误差估计。方法一基于特征值问题中使用的Rayleigh商,计算简洁有效,但是依赖于从最小特征值开始的特征子空间的逐次估计。方法二利用近似特征函数的残差估计,采用Hypercircle手法对近似特征函数子空间进行高精度的误差估计。报告中还会简要介绍G.Polya关于特征值的形状最优的猜想,以及特征函数的可量化误差估计在该猜想的计算机辅助数学证明中的应用。相关论文:[URL]