诺伊曼
在集合论及其数学应用中
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类