bpnn
针对现有基于神经网络的网络安全态势评估方法效率低等问题,提出基于布谷鸟搜索(CS)优化反向传播(BP)神经网络(CSBPNN)的网络安全态势评估方法。首先,根据态势输入指标数和输出态势值确定BP神经网络( BPNN)的输入输出节点数,根据经验公式和试凑法计算出隐含层节点数;然后,随机初始化各层的连接权值和阈值,使用浮点数编码方式将权值与阈值编码成布谷鸟;最后,使用CS算法对权值和阈值进行优化,得到用于态势评估的CSBPNN模型并对其进行训练,将网络安全态势数据输入到CSBPNN模型中,获取网络的安全态势值。实验结果表明,与BPNN和遗传算法优化BP神经网络方法相比,基于CSBPNN的网络安全态势评估方法的迭代代数分别减少943和47且预测精度提高8. 06个百分点和3.89个百分点,所提方法具有较快的收敛速度和较高的预测精度
梯度下降优化算法综述 该文翻译自Anoverviewofgradientdescentoptimizationalgorithms。 总所周知,梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现
基于改进卷积神经网络CNND的电主轴轴承故障诊断方法( ) 目的 解决深度学习方法在建立电主轴轴承故障诊断模型时出现的过拟合现象,提高电主轴轴承故障诊断准确率.方法 提出一种基于改进卷积神经网络的诊断方法,该方法在卷积神经网络的训练过程中融入Dropout优化方法,使整个故障诊断模型按照一定的比例随机“关闭”隐藏层中的神经元,减少模型在每一次训练过程中所需要调整的参数数量.结果 将Dropout优化方法与卷积神经网络相结合所建立的电主轴轴承故障诊断模型是可行的,其平均诊断准确率能够达到99.012%,远高于基于CNN、CNN+L2和BPNN这3种神经网络诊断方法的诊断准确率.卷积神经网络方法相比于传统的“基于信号处理提取到的特征和机器学习模型”方法,更适用于电主轴轴承故障诊断.结论 提出的CNND方法实现了卷积神经网络与Dropout优化方法的有机结合,对原始数据进行降维处理使模型学习到的特征更利于电主轴故障的分类,同时根据故障数据的特点确定相关参数的初始值,克服一般深度学习方法在进行电主轴故障诊断时出现的过拟合现象提高诊断准确率.
基于改进卷积神经网络CNND的电主轴轴承故障诊断方法( ) 目的 解决深度学习方法在建立电主轴轴承故障诊断模型时出现的过拟合现象,提高电主轴轴承故障诊断准确率.方法 提出一种基于改进卷积神经网络的诊断方法,该方法在卷积神经网络的训练过程中融入Dropout优化方法,使整个故障诊断模型按照一定的比例随机“关闭”隐藏层中的神经元,减少模型在每一次训练过程中所需要调整的参数数量.结果 将Dropout优化方法与卷积神经网络相结合所建立的电主轴轴承故障诊断模型是可行的,其平均诊断准确率能够达到99.012%,远高于基于CNN、CNN+L2和BPNN这3种神经网络诊断方法的诊断准确率.卷积神经网络方法相比于传统的“基于信号处理提取到的特征和机器学习模型”方法,更适用于电主轴轴承故障诊断.结论 提出的CNND方法实现了卷积神经网络与Dropout优化方法的有机结合,对原始数据进行降维处理使模型学习到的特征更利于电主轴故障的分类,同时根据故障数据的特点确定相关参数的初始值,克服一般深度学习方法在进行电主轴故障诊断时出现的过拟合现象提高诊断准确率.