光谱线
传统镀膜带通干涉滤光片用于选择性地透射范围狭窄的波长,同时阻断所有其他的波长,是各种生物医学和定量化学应用的理想选择。 带通干涉滤光片广泛应用于各种仪器,其中包括临床化学、环境实验、色彩学、元件和激光谱线分离、火焰光度法、荧光和免疫测定。此外,还可使用带通干涉滤光片从弧形灯或气体放电灯散谱线中选择离散光谱线,以及从Ar、Kr、Nd:YAG及其他激光中隔离特定光谱线
进口光谱仪的应用优势体现在哪? 随着科技的不断发展,进口光谱仪所采用的原理是用电弧(或火花)的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并打印出各元素的百分含量。 从以上原理可以看出进口光谱仪,有其独特的、特别适合于配合炉前分析的优点,使其发展成为金属冶炼和铸造行业必不可少的分析手段,其特点如下: 1、 炉中取的样品只要打磨掉表面氧化皮,固体样品即可放在样品台上激发,免去了化学分析钻取试样的麻烦。对于铝及铜、锌等有色金属样品而言,可用小车床车去表面氧化皮即可
等离子体光谱仪是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线。阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、X射线等等。通过等离子体光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素
传统镀膜带通干涉滤光片用于选择性地透射范围狭窄的波长,同时阻断所有其他的波长,是各种生物医学和定量化学应用的理想选择。 带通干涉滤光片广泛应用于各种仪器,其中包括临床化学、环境实验、色彩学、元件和激光谱线分离、火焰光度法、荧光和免疫测定。此外,还可使用带通干涉滤光片从弧形灯或气体放电灯散谱线中选择离散光谱线,以及从Ar、Kr、Nd:YAG及其他激光中隔离特定光谱线
二手光谱分析能迅速而全面地查明矿石中所含元素的种类及其大致含量范围,不至于遗漏某些稀有、稀散和微量元素,因而选矿试验常用此法对原矿或产品的化学成分进行普查,查明了含有哪些元素之后,再进行定量的化学分析。下面就让小编来给大家详细讲解一下它的具体内容。 二手光谱分析原理:矿石中的不同元素经过热辐射等能量的作用能够发射不同波长的光谱线,通过摄谱仪记录,然后与已知元素的谱线比较,即可得知矿石中含有哪些元素及其大致含量
光模块是光纤传输系统中收发光信号的器件,用来将两个电口设备(如服务器、交换机等)用光纤连接在一起。根据适用光纤类型的不同,光模块可分为单模光模块和多模光模块,本教程将详细介绍这两种光模块的区别。 顾名思义,单模光模块即和单模光纤一起使用的光模块,采用LD或光谱线较窄的LED作为光源,可以传输极高带宽的数据信号,因此传输距离很远
如何正确挑选一台好的地物光谱仪? 相信大部分的人都不能确切的区分如何才能购买到质量上乘的地物光谱仪,那么先来聊聊什么是地物光谱仪。 其原理是利用电弧的高温,直接气化和激发样品中的元素,发出每个元素的特定波长,然后用光栅分光,形成光谱,按波长排列。这类元件的特征光谱线穿过出射缝,射入各自光电倍增管的光谱线,然后由光栅分光,再由光栅分光
传统镀膜带通干涉滤光片用于选择性地透射范围狭窄的波长,同时阻断所有其他的波长,是各种生物医学和定量化学应用的理想选择。 带通干涉滤光片广泛应用于各种仪器,其中包括临床化学、环境实验、色彩学、元件和激光谱线分离、火焰光度法、荧光和免疫测定。此外,还可使用带通干涉滤光片从弧形灯或气体放电灯散谱线中选择离散光谱线,以及从Ar、Kr、Nd:YAG及其他激光中隔离特定光谱线
原子所发射的光谱线强度I按照频率v(或波长λ)分布的形状。在理论上,一般假设原子能级是无限窄的,因此由能级间跃迁而产生的辐射是单色的。而由于原子处在某能级上有一定寿命,又受多普勒效应和其他微观粒子的干扰等,实际观察到的谱线却具有一定的宽度,甚至发生移位
1、两者的测试原理不同:直读光谱仪是用电弧(火花)的高温使样品中各种元素从固态直接气化并被激发而射出各元素的特征波长,经光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并计算出各元素的百分含量。X荧光光谱仪用X射线照射试样,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型
