ionization
PID是英文 Photo Ionization Detection–即“光离子化检测”的英文首字母缩写。 PID的基本原理是利用惰性气体真空放电现象所产生的紫外线 (VUV),使待测气体分子发生电离,并通过测量离子化后的气体所产生的电流强度,从而得到待测气体浓度。 2.光离子(PID)检测方法具有哪些优点? (2) 抗干扰性强,石化行业常见气体(烷烃)不易对其产生的影响; (4) 是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体
电解质电离时,化学键断裂,形成阴阳离子。但这之后并没有新的化学键生成[1],所以电离并不是化学反应。尽管如此,弱电解质的电离有一个类似与化学平衡常数的电离平衡常数(ionization constant),可用来描述弱电解质的电离程度
PID是英文 Photo Ionization Detection–即“光离子化检测”的英文首字母缩写。 PID的基本原理是利用惰性气体真空放电现象所产生的紫外线 (VUV),使待测气体分子发生电离,并通过测量离子化后的气体所产生的电流强度,从而得到待测气体浓度。 2.光离子(PID)检测方法具有哪些优点? (2) 抗干扰性强,石化行业常见气体(烷烃)不易对其产生的影响; (4) 是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体
EDI高纯水设备作为制取超纯水的设备,作为反渗透设备后的二次除盐设备,可以制取出高达10-18.2MΩ.CM。因此广泛用于微电子工业,半导体工业,发电工业,制药行业和实验室。也可以作为制药蒸馏水、食物和饮料生产用水、发电厂的锅炉的补给水,以及其它应用高纯水
PID是英文 Photo Ionization Detection–即“光离子化检测”的英文首字母缩写。 PID的基本原理是利用惰性气体真空放电现象所产生的紫外线 (VUV),使待测气体分子发生电离,并通过测量离子化后的气体所产生的电流强度,从而得到待测气体浓度。 2.光离子(PID)检测方法具有哪些优点? (2) 抗干扰性强,石化行业常见气体(烷烃)不易对其产生的影响; (4) 是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体
EDI高纯水设备作为制取超纯水的设备,作为反渗透设备后的二次除盐设备,可以制取出高达10-18.2MΩ.CM。因此广泛用于微电子工业,半导体工业,发电工业,制药行业和实验室。也可以作为制药蒸馏水、食物和饮料生产用水、发电厂的锅炉的补给水,以及其它应用高纯水
电离能(Ionization energy),或称游离能、电离焓,常简记为EI,指的是将一个电子自一个孤立的原子、离子或分子移至无限远处所需的能量。更广义的用法,第一电离能定义为气态原子失去一个电子成为一价气态正离子所需的最低能量,记作I1;气态一价正离子失去一个电子成为气态二价正离子所需的能量称为第二电离能,记作I2。依此类推
PID是英文 Photo Ionization Detection–即“光离子化检测”的英文首字母缩写。 PID的基本原理是利用惰性气体真空放电现象所产生的紫外线 (VUV),使待测气体分子发生电离,并通过测量离子化后的气体所产生的电流强度,从而得到待测气体浓度。 2.光离子(PID)检测方法具有哪些优点? (2) 抗干扰性强,石化行业常见气体(烷烃)不易对其产生的影响; (4) 是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体
PID是英文 Photo Ionization Detection–即“光离子化检测”的英文首字母缩写。 PID的基本原理是利用惰性气体真空放电现象所产生的紫外线 (VUV),使待测气体分子发生电离,并通过测量离子化后的气体所产生的电流强度,从而得到待测气体浓度。 2.光离子(PID)检测方法具有哪些优点? (2) 抗干扰性强,石化行业常见气体(烷烃)不易对其产生的影响; (4) 是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体
