算术基本定理,又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。
分解的唯一性,即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的。
算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
这种表示的方法存在,而且是唯一的。
算术基本定理的最早证明是由欧几里得给出的。然而,在欧几里得的时代,并没有发展出幂运算和指数的写法,甚至连四个整数的乘积这种算式都被认为是没有意义的,所以欧几里得并没有给出算术基本定理的现代陈述。
再用反证法:假设有些大于1的自然数可以以多于一种的方式写成多个质数的乘积,那么假设 n {\displaystyle n} 是其中最小的一个。