发射光谱
如何提高荧光光谱仪接收到的荧光?对于一些物质来说,产生荧光的能力是非常弱,以至一些普通探测器都无法响应。为了使荧光光谱仪能够接收到更多的荧光,往往采用以下几个措施: 1、提高激发光的强度:可以用激光器来代替卤素灯源,激光器的功率密度往往比卤素灯高的多。使用该方法,根据激光器功率的不同,荧光有几倍到几个数量级的提高
直读光谱仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。国际上比较有名的有美国热电(收购瑞士ARL),德国斯派克,德国布鲁克,日本岛津等比较有名。 光谱分析仪物理原理; 任何元素的原子都是由原子核和绕核运动的电子组成的,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态
分析小屋系统可满足过程分析成套系统所需求的温度、湿度、防尘、防爆炸环境条件的使用要求,质量可靠、功能齐全、使用、安装、维护简单。 在近40余年数千套各种成套工程应用实践经验的基础上研制、开发、生产的移动监测系统。其特点是方便快捷,即可以用于应急监测,也适用于常规在线连续监测
手持式分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。 手持式分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器
电感耦合等离子体发射光谱仪是一种由电感耦合等离子体、光谱仪、数据采集系统等部件组成的高精度分析仪器,可用于快速、准确地测定各种元素的含量。利用电感耦合等离子体的稳定等离子化特性,将样品离子化并激发产生发射光谱,通过光谱分析得到各种元素的含量。该仪器操作简便,精度高,广泛应用于环境检测;食品安全检测;药品检验;矿物分析;化工生产;生命科学等多个领域
LIBS(LaserInducedBreakdownSpectroscopy)激光诱导击穿光谱系统是该技术通过超短脉冲激光聚焦样品表面形成等离子体,利用光谱仪对等离子体发射光谱进行分析,识别样品中的元素组成成分,可以进行材料的识别、分类、定性以及定量分析。LSpec-LIBS400分体式LIBS激光诱导击穿光谱系统 LIBS(LaserInducedBreakdownSpectroscopy)激光诱导击穿光谱系统是该技术通过超短脉冲激光聚焦样品表面形成等离子体,利用光谱仪对等离子体发射光谱进行分析,识别样品中的元素组成成分,可以进行材料的识别、分类、定性以及定量分析。LSpec-LIBS800LIBS激光诱导击穿光谱系统 iSpec-R系列显微球面反射率光谱分析仪是莱森光学(LiSenOptics)专门针对全波长显微球面光学元件反射率测量的新产品,适用范围广,除了能够快速且精确的测量各种光学元件及光学材料、球面与非球面产品(包括平面镜片)的相对及绝对反射率,还可以选配增加光学元件的折射率进行分析
原子中某一外层电子由基态激发到高能态所需要的能量,称为激发电位。以电子伏特(eV)表示;激发电位等于两能级之间的能量差。 把原子中外层电子电离所需要的最低能量,称为电离电位,以eV表示
环评测评涉及范围很广。污水中污染物的过量排放对环境影响很大,要求企业在排放前达到污水处理标准。水质测试、空气废气测试、工作场所废气测试、土壤测试、基材及固体废物测试、室内装饰材料测试、辐射测试、化学危险因素测试等
分光光度计,又称光谱仪(spectrometer),是将成分复杂的光,分解为光谱线的科学仪器。测量范围一般包括波长范围为380~780 nm的可见光区和波长范围为200~380 nm的紫外光区。不同的光源都有其特有的发射光谱因此可采用不同的发光体作为仪器的光源
检测活体中生物大分子纳米级距离和纳米级距离变化的有力工具,广泛应用于生物大分子相互作用分析、细胞生理研究、免疫分析等。 当供体荧光分子的发射光谱与受体荧光分子的吸收光谱重叠,并且两个分子的距离在 10nm 范围以内时,就会发生一种非放射性的能量转移,即 FRET 现象,使得供体的荧光强度比它单独存在时要低的多(荧光猝灭),而受体发射的荧光却大大增强(敏化荧光)。 1、实验背影低,但抗原、抗体纯度要求较高; 2、简便的均相检测(不需要洗板),操作简单; 3、实验产物比较稳定,可用于固相分析或利用特殊的荧光显微镜进行单细胞分析,但需要特殊的辅助设备; 4、应用灵活多样检测组合丰富,需要融合蛋白的表达5、可用于复杂环境下的分析,研究活细胞生理条件下研究蛋白质-蛋白质间相互作用