convolutional
报告地点:大学城校区工学一号馆201 报告内容:随着互联网技术的发展蜘蛛电竞直播,图像在互联网上的传播越来越频繁。图像隐写是利用视觉冗余,将秘密信息嵌入到图像中而不被感知的技术。图像隐写在秘密情报的传递中起著非常重要的作用
卷积神经网络 Convolutional Neural Networks,简称CNN。卷积神经网络由一个或多个卷积层和顶端的全连通层组成,同时也包括关联权重和池化层。这一结构使得卷积神经网络能够利用输入数据的二维结构
在AI时代进行式当中,卷积神经网络(Convolutional Neural Network CNN)是众多电脑视觉深度学习网络的基础与核心,本次课程将重头介绍简易的影像处理基本知识,以及经典的影像特征撷取方式。会详细讲解卷积神经网络的计算流程,以及一些经典的CNN模型,并实际演练CNN的计算过程。我们希望透过介绍卷积神经网络的理论基础并拆解其内部构造,让大家能够参与了解现代深度学习系统的黑盒内部原理,借此将AI技术开放出去,并能够开发自己的卷积神经网络模型从而达到开放与创新的价值
现阶段,由于诸多干扰因素,例如纳米材料对细胞状态的影响和对常见实验手段结果的干扰等,纳米复合药物系统的治疗效果评估一直缺乏精准的判断方法,结合现如今机器学习在科研领域越来越广泛的应用,机器学习可能成为解决这一问题的有效途径。近日,同济大学附属上海同济医院的程黎明教授团队朱融融等开发了DeepScreen——一种基于深度学习的可以用于纳米复合药物筛选的新方法,其具有精准、迅速以及抗干扰等优势。 DeepScreen利用卷积神经网络(Convolutional neural network,CNN),基于流式细胞获得的单细胞图像,和常用实验手段相比较,可以大幅度节约检测时间,从原先的几天缩短到2-6小时,有效提高检测效率