z0
对有理函数f=fd,n=3n+d,d
对有理函数f=F(d,n)=3n+d,(d,n)∈Q进行路径积分: 构造有理域变换: f:L→J →AB,F=(x,y,z)={∑f(x,y,z)|x=3n+d,y=3n-d,z=n/2,(d,n)∈Q}: L=(x0,y0,z0)={∑f(x0,y0,z0)|d=0,n=0,x0=3×0+0=0,y0=3×0-0=0,z0=0/2=0}→J=(x1,y1,z1)={∑f(x1,y1,z1)|d=1,n=0,x1=3×0+1=1,y1=3×0-1=-1,z1=0/2=0}→A=(x2,y2,z2)={∑f(x2,y2,z2)|d∈Q,n∈Q+,x2=3×1+d,y2=3×1-d,z2=n/2}B=(x3,y3,z3)={∑f(x3,y3,z3)|d∈Q,n∈Q-,x3=3×(-1)+d,y3=3×(-1)-d,z3=n/2}。 (1)通过路径A进行有理域变换: 【1】(3×1+d1-1)/3=(3×1-d1)/2,d1=1;(3×1-d2-1)/3=(3×1+d2)/2,d2=-1。【2】(3×1-d3)/2=2(3×1+d3),d3=9/5;(3×1+d4)/2=2(3×1-d4),d4=-9/5