seq2seq
这篇文章将简单介绍seq2seq模型+attention机制
这篇文章将简单介绍seq2seq模型+attention机制,以及在这个模型下,字符级逐字的输入和输出任务产生的句向量的特性。 许久未更博了,在前段时间测试了用seq2seq做ner任务,可以参考之前的文章《RNN的Seq2Seq模型做命名实体识别》 ,之后通过NER做NLU,再加上RL尝试多轮对话,结果达到了期望,但是还有很多工作需要去做,多轮语料采集、句子相似度、句向量,在多轮对话中,我没有尝试将每句话进行分类,我认为句子本身表意就非常清晰,标注反而画蛇添足,特别是上下文中的句子,其意思根据上下文而变化。那么对话中去匹配距离最近的句子,并且人为的反馈,可能是一个多轮对话的主要方式
负责互联网风险预警的算法研发
负责互联网风险预警的算法研发,包括但不限于多语言翻译、事件发现、事件聚类、内容分类、细粒度情感和实体识别等; 参与风险预警与电商领域内的知识图谱构建,为产品应用提供更精准的信息,并能形成很好的关联性分析; 跟进学术界前沿研究和发展趋势,提升算法效果和性能。 2年以上算法研发工作经验,研究生及以上学历优先; 拥有良好的编码能力,有扎实的数据结构和算法功底; 熟练掌握主流的NLP技术工具及模型算法,包括CRF、CNN、RNN、Word Embedding、Seq2Seq、FastText,Bert等,有Tensorflow/PyTorch实战经验优先; 参与过分词、命名实体识别、深度文本匹配、文本分类、知识图谱、自动对话等相关项目; 责任心强,有良好的学习能力及团队合作精神,自我驱动能力强。