ktt
结论 - 最大熵模型就是softmax分类 - 在满足广义线
结论 - 最大熵模型就是softmax分类 - 在满足广义线性模型的平衡条件下,满足最大熵条件的模型映射函数就是softmax函数 - 在统计机器学习方法一书中,给出了在特征函数定义下的最大熵模型,其与softmax回归都属于对数线性模型 - 当特征函数从二值函数扩展为特征值本身时,最大熵模型就化为softmax回归模型 - 最大熵最大化的是条件熵,不是条件概率的熵,也不是联合概率的熵。 分析这个等式: 大白话:我们希望得到这么一个映射函数\(\pi\),对某一维(j)特征,用所有样本被映射函数归为第u类的概率加权所有样本的特征值之和,等于第u类内所有样本的特征值之和。显然,最好的情况就是左右两个累加式内的元素完全一样,只有第u类的样本被累加,且第u类样本被映射函数归为第u类的概率为1,其他类样本被归为第u类样本的概率为0. 但是,这个等式非常的宽松,它只要求两个和式相同,并不要求每一个元素相同,而且这个式子没有显示的写出映射函数的表达式,任何满足该式的非线性映射都有可能称为映射函数