neurips
由来自世界各地的专业分析师为你解读前沿进展
由来自世界各地的专业分析师为你解读前沿进展,技术热点和经典论文。我们的分析师团队由来自于各大名校的硕士和博士,以及一线研究机构的研究员组成。 每年一度的NeurIPS是神经网络研究者的盛会,汇聚数以千计的论文,呈现思维碰撞的火花
主流机器学习模型的基本假设是训练和测试数据的独立同分布iid
主流机器学习模型的基本假设是训练和测试数据的独立同分布(IID),导致其缺乏对分布外数据的泛化能力(Out-Of-Distribution Generalization),使得当前模型在真实、开放场景下的预测性能无法保证,是当前机器学习研究的公认重要难题之一。本报告将重点介绍面向分布外泛化的稳定学习最新研究进展,并针对首届分布外泛化图像分类挑战赛NICO Challenge进行全面介绍和技术分析。 崔鹏,清华大学计算机系长聘副教授,博士生导师
偏微分方程在许多学科和工程应用中扮演着重要的角色
偏微分方程在许多学科和工程应用中扮演着重要的角色,例如物理系统的建模,计算化学,流体力学和数值天气预报等。基于偏微分方程对系统未来的演化进行预测往往需要依赖数值解法。传统数值解法在遇到高维问题,复杂边界,参数变化时,将会遇到计算效率不高,结果不可复用等问题
特征脸eigenface是指用于机器视觉领域中的人脸识别问题
特征脸(Eigenface)是指用于机器视觉领域中的人脸识别问题的一组特征向量。使用特征脸进行人脸识别的方法首先由Sirovich and Kirby (1987)提出,并由Matthew Turk和Alex Pentland用于人脸分类。该方法被认为是第一种有效的人脸识别方法