给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例1
最简单的暴力方法是,枚举数组中的每个元素,再遍历一遍数组统计其出现次数。该方法的时间复杂度是 O(N^2)O(N 2),会超出时间限制,因此我们需要找出时间复杂度小于 O(N^2)O(N 2) 的优秀做法。
我们知道出现次数最多的元素大于 n/2 次,所以可以用哈希表来快速统计每个元素出现的次数。
我们使用哈希映射(HashMap)来存储每个元素以及出现的次数。对于哈希映射中的每个键值对,键表示一个元素,值表示该元素出现的次数。
我们用一个循环遍历数组 nums 并将数组中的每个元素加入哈希映射中。在这之后,我们遍历哈希映射中的所有键值对,返回值最大的键。我们同样也可以在遍历数组 nums 时候使用打擂台的方法,维护最大的值,这样省去了最后对哈希映射的遍历。
如果将数组 nums 中的所有元素按照单调递增或单调递减的顺序排序,那么下标为 n/2 的元素(下标从 0 开始)一定是众数。
对于这种算法,我们先将 nums 数组排序,然后返回上文所说的下标对应的元素。下面的图中解释了为什么这种策略是有效的。在下图中,第一个例子是 nn 为奇数的情况,第二个例子是 nn 为偶数的情况。
对于每种情况,数组下面的线表示如果众数是数组中的最小值时覆盖的下标,数组下面的线表示如果众数是数组中的最大值时覆盖的下标。对于其他的情况,这条线会在这两种极端情况的中间。对于这两种极端情况,它们会在下标为 n/2
因此,无论众数是多少,返回 n/2下标对应的值都是正确的。