文章《三个相切圆的公切圆》中,笔者讲到利用反演作三个相切圆的公切圆,那时要求三个圆要两两相切。后来思考了一下,发现不用这个条件,只要三个之中的一个圆与另外两个圆都相切即可。

在学车的时候,我堂大哥曾问我一道作圆的问题:

平面上给出三个两两相切的圆以及它们的圆心,求作一个圆与这三个圆都相切(尺规作图)。

如果从纯几何的途径入手,我们甚至很难判断这样的圆是否存在。但是我之前似乎已经看过类似的题目,于是很快想到一个名词:反演。反演可以将圆反演成直线(圆过反演点),也可以将圆反演成圆(圆不过反演点),而其他的相切、相交等关系保持不变。对反演后的图形进行相同的反演,就变回原来的图形。本题的难点在于圆太多,利用反演,我们可以将它变为两条直线和一个圆的问题。

这一次又是数联天地论坛上的问题,这个数学论坛做的挺好的。^_^

已知五个定点A、B、C、D、E,求作五边形FGHIJ,使每一边的中点分别为5定点。

数联天地论坛中的watt5151朋友提出了这样的一个问题:

三角形的“六接圆”

如图,已知三角形ABC,如何做一个圆,它与三角形三边都相交,而且六个交点可以连成三条直径?

在网上查找到的,好像有三个不同的版本,全部摘录在此。

关于正17边形的尺规作图方法,请看:

为何正17边形能够用尺规作出来?要如何作?先别急,请看下面的解释:

一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。)

正17边形的尺规作法是高斯在1796年得出的,他也因此决心要成为数学家。关于费马质数,是指形如$2^{2^n}+1$的质数,一开始费马认为对于所有的n,这种形式的数都是质数。可是这似乎是上天的玩笑,目前只发现了当n=01234的时候$2^{2^n}+1$是质数,其余都是合数。