graphsage
本文主要讲解两种图采样算法
本文主要讲解两种图采样算法。前面GCN讲解的文章中,我使用的图$G$节点个数非常少,然而在实际问题中,一张图可能节点非常多,因此就没有办法一次性把整张图送入计算资源,所以我们应该使用一种有效的采样算法,从全图$G$中采样出一个子图$g$,这样就可以进行训练了 采样的阶段首先选取一个点,然后随机选取这个点的一阶邻居,再以这些邻居为起点随机选择它们的一阶邻居。例如下图中,我们要预测0号节点,因此首先随机选择0号节点的一阶邻居2、4、5,然后随机选择2号节点的一阶邻居8、9;4号节点的一阶邻居11、12;5号节点的一阶邻居13、15 下图展示了邻居采样的优点,极大减少训练计算量这个是毋庸置疑的,泛化能力增强这个可能不太好理解,因为原本要更新一个节点需要它周围的所有邻居,而通过邻居采样之后,每个节点就不是由所有的邻居来更新它,而是部分邻居节点,所以具有比较强的泛化能力 PinSAGE 回到上述问题,采样时选取虚拟邻居有什么好处?可以快速获取远距离邻居的信息