50471054
通过XPS等微观分析手段证实了磁性隧道结在高温退火后,反铁磁层中的Mn元素扩散到被钉 扎铁磁层及势垒层中,破坏了势垒层/铁磁层界面,从而导致了磁性隧道结高温退火后TMR的 下降.然而在反铁磁层和被钉扎铁磁层之间插入一层纳米氧化层后,Mn的扩散得到了抑制, 使磁性隧道结的热稳定性得以提高. (1)聊城大学物理与信息工程学院磁电子实验室,聊城 252059; (2)中国科学院物理研究所磁学国家重点实验室,北京 100080 1. (1)聊城大学物理与信息工程学院磁电子实验室,聊城 252059; (2)中国科学院物理研究所磁学国家重点实验室,北京 100080 国家自然科学基金(批准号:50171078和50471054)资助的课题. 摘要: 通过XPS等微观分析手段证实了磁性隧道结在高温退火后,反铁磁层中的Mn元素扩散到被钉 扎铁磁层及势垒层中,破坏了势垒层/铁磁层界面,从而导致了磁性隧道结高温退火后TMR的 下降.然而在反铁磁层和被钉扎铁磁层之间插入一层纳米氧化层后,Mn的扩散得到了抑制, 使磁性隧道结的热稳定性得以提高.
通过XPS等微观分析手段证实了磁性隧道结在高温退火后,反铁磁层中的Mn元素扩散到被钉 扎铁磁层及势垒层中,破坏了势垒层/铁磁层界面,从而导致了磁性隧道结高温退火后TMR的 下降.然而在反铁磁层和被钉扎铁磁层之间插入一层纳米氧化层后,Mn的扩散得到了抑制, 使磁性隧道结的热稳定性得以提高. (1)聊城大学物理与信息工程学院磁电子实验室,聊城 252059; (2)中国科学院物理研究所磁学国家重点实验室,北京 100080 1. (1)聊城大学物理与信息工程学院磁电子实验室,聊城 252059; (2)中国科学院物理研究所磁学国家重点实验室,北京 100080 国家自然科学基金(批准号:50171078和50471054)资助的课题. 摘要: 通过XPS等微观分析手段证实了磁性隧道结在高温退火后,反铁磁层中的Mn元素扩散到被钉 扎铁磁层及势垒层中,破坏了势垒层/铁磁层界面,从而导致了磁性隧道结高温退火后TMR的 下降.然而在反铁磁层和被钉扎铁磁层之间插入一层纳米氧化层后,Mn的扩散得到了抑制, 使磁性隧道结的热稳定性得以提高.