氦气
分析标准气体的方法很多,但常用的主要有:气相色谱法、化学发光法、非色散红外法以及用于微量水和微量氧分析的其他方法。 气相色谱法适用于氢气、氧气、氮气、氩气、氦气、一氧化碳、二氧化碳等无机气体,甲烷、乙烷、丙烯及C3以上的绝大部分有机气体的分析。通过直接法、浓缩法、反应法等样品处理技术的应用,分析的含量范围为10-9~99
百瓦级功率,制冷至零下18摄氏度,家用冰箱可以做到。同等功率,制冷至零下271摄氏度,则需要国际先进技术。 近日,国家重大科研装备研制项目“液氦到超流氦温区大型低温制冷系统研制”通过验收及成果鉴定,标志着我国具备了研制液氦温度(零下269摄氏度)千瓦级和超流氦温度(零下271摄氏度)百瓦级大型低温制冷装备的能力
高纯氦气是指纯度在99.99%以上的氦气,执行标准:GB/T 4844-2011纯氦、高纯氦和超纯氦。氦气是一种无色、无味、无毒的不燃烧的储存于气瓶中的高压惰性气体。微溶于水,有较高的热导性,密度0.1785g/cm3
气相色谱法适用于氢气、氧气、氮气、氩气、氦气、一氧化碳、二氧化碳等无机气体,甲烷、乙烷、丙烯及C3以上的绝大部分有机气体的分析。气相色谱仪主要由气路系统、进样系统、柱恒温箱、色谱柱、检测器和数据处理系统等组成。用气相色谱法分析标准气体,要想获得准确可靠的分析结果,首先必须建立分析方法,选择合适的操作条件和操作技术
α衰变(Alpha decay,又称alpha衰变)是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出(附注:α粒子,又名阿尔法粒子,即氦-4核,4 2He ,即一颗由2颗质子和2颗中子组成的原子核); α衰变发生后,原子核的质量数会减少4个单位,其原子序也会减少了2个单位。 下面之反应式式(I)是α衰变的一个例子。例如,铀-238通过α粒子发射的衰减以形成钍-234可以表示为:[1] α衰变是一种核分裂,当中涉及量子物理学中的穿隧效应,和β衰变不同的是α衰变是由强核力力场产生和控制
