gd36
利用相对论扭曲波方法和新发展的研究电子碰撞激发过程的计算程序REIE06,系统计算了电子碰撞激发高离化态类镍Gd36+和Rn58+—U64+(Z=86—92)离子从基态到4l(l=s,p,d,f)次壳层精细结构能级的碰撞强度和截面.研究了随等电子系列变化时,从基态到与X射线激光有关的3d94p和3d94d激发态能级的电子碰撞激发截面随Z的变化,讨论了强的组态相互作用对高离化态类镍离子截面的影响.通过对Gd36+离子涉及X射线激光跃迁的相关能级电子碰撞激发速率系数的计算,分析了等离子体中电子温度对碰撞过程的影响.同时,目前部分计算结果与以往的理论结果进行了比较,得到了很好的一致性. (1)西北师范大学物理与电子工程学院,兰州 730070; (2)西北师范大学物理与电子工程学院,兰州 730070;兰州重离子加速器国家实验室原子核理论研究中心,兰州 730000 1. (1)西北师范大学物理与电子工程学院,兰州 730070; (2)西北师范大学物理与电子工程学院,兰州 730070;兰州重离子加速器国家实验室原子核理论研究中心,兰州 730000 摘要: 利用相对论扭曲波方法和新发展的研究电子碰撞激发过程的计算程序REIE06,系统计算了电子碰撞激发高离化态类镍Gd36+和Rn58+—U64+(Z=86—92)离子从基态到4l(l=s,p,d,f)次壳层精细结构能级的碰撞强度和截面.研究了随等电子系列变化时,从基态到与X射线激光有关的3d94p和3d94d激发态能级的电子碰撞激发截面随Z的变化,讨论了强的组态相互作用对高离化态类镍离子截面的影响.通过对Gd36+离子涉及X射线激光跃迁的相关能级电子碰撞激发速率系数的计算,分析了等离子体中电子温度对碰撞过程的影响.同时,目前部分计算结果与以往的理论结果进行了比较,得到了很好的一致性.