求生成合法串的概率。

然后我们发现,在 $M \ge N$时,这个题面是非常难求的,我们考虑对题目进行一些转化。

而想要求有多少种方案合法,我们考虑求有多少种方案非法。

显然,在任何时刻,若$0$ 的个数都要多于 $1$ 的个数,转化到此图中,即为到达 $y=-1$ 这条直线,该方案就是非法的。所以非法的方案数就转化为了到达终点的总方案数中,会经过 $y=-1$ 这条直线的方案数。

我们接着看这张图。

如果我们找到了一种方案,使得路径会经过 $y=-1$ ,那么我们可以将其到达 $y=-1$ 之前的路径以 $y=-1$ 做对称,于是我们惊奇的发现,我们所要求的非法方案数就是从 $E$ 点出发,到达 $B$ 的方案数。

显然,合法的概率为 $1$ 减去不合法的概率。所以答案为: