n 条折线最多将平面划分成几个部分 ?
第一步我们有个贪心想法:要使加上第i个折线分割出的区域最多,则要使加上第i-1条折现分割出区域最多。
为了使这条直线加上后能有更多区域变多,我们要让这条直线与尽量多直线相交。如果它与 2i-2 条直线相交,那么它经过了 2i-1 个区域,则它一定把这些平面都一分为二了。
由此我们可以知道:一条直线在原来 i-1 条折线的基础上可以为其增加 2i-1 个区域。那么第i个折线由两条直线构成,最多可以增加 4i-2 个折线。
但是!一条折线和两条直线其实是不一样的,因为 X 形的两条相交直线可以把平面分成四个区域,但是 V 形的折线只能分成两个区域!仔细思考可以发现,其实总共多算了一个区域。X和V相差的明明是两个区域,为什么说只多算了一个呢?原因是,在 V 的尖尖头上面有一面块区域是重复算的!
其实是《具体数学》正文里的例题qwq