如果一个Pytorch运算支持广播的话,那么就意味着传给这个运算的参数会被自动扩张成相同的size,在不复制数据的情况下就能进行运算,整个过程可以做到避免无用的复制,达到更高效的运算。

广播机制实际上是在运算过程中,去处理两个形状不同向量的一种手段。

pytorch中的广播机制和numpy中的广播机制一样 因为都是数组的广播机制。

核心:如果相加的两个数组的shape不同 就会触发广播机制:

1)程序会自动执行操作使得A.shape==B.shape;

2)对应位置进行相加运算,结果的shape是:A.shape和B.shape对应位置的最大值,比如:A.shape=(194)B.shape=(1514)那么A+B的shape是(1594)

#像下面这种情况下就不行,因为x不满足这个条件。

3.2 按从右往左顺序看两个张量的每一个维度,x和y每个对应着的两个维度都需要能够匹配上。

什么情况下算是匹配上了?满足下面的条件就可以:

c.某个维度 一个张量有,一个张量也有但大小是1

如下举例:

如上面代码中,首先将两个张量维度向右靠齐,从右往左看,两个张量第四维大小相等,都为1,满足上面条件a;第三个维度大小不相等,但第二个张量第三维大小为1,满足上面条件b;第二个维度大小相等都为3,满足上面条件a;第一个维度第一个张量有,第二个张量没有,满足上面条件b,因此两个张量每个维度都符合上面广播条件,因此可以进行广播。

两个张量维度从右往左看,如果出现两个张量在某个维度位置上面,维度大小不相等,且两个维度大小没有一个是1,那么这两个张量一定不能进行广播。

a. 首先第一步,将上面条件b的类型变成条件c的类型,也即是把第二个张量在缺失维度的位置上新增一个维度,维度大小为1,新增的维度如下面所示。

b. 第二步,x、y对应维度不等的位置,把size为1的维度会被广播得和对应维度一样大,比如y中0维的1会变成5,y中2维的1会变成4,最后两个张量的维度大小变成一样,然后再进行张量运算,转变的维度如下所示。

5.1 一维张量进行广播,b被自动广播得和a一样的维度大小,完成了张量相乘运算,如下图所示。

输出结果如下:

5.1 二维张量进行广播,b被自动广播得和a一样的维度大小,完成了张量相加运算,如下图所示。

上面二维张量和一维张量相加运算进行广播过程为:a的形状是(41),b的形状是(3),如果a和b要匹配上,第一步给b新添一个维度,我们有:a的形状是(41),b的形状是(13);第二步二者各自把为1的维度进行广播,就如上图中那样进行广播,最后运算完成。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。