汉诺塔问题的描述如下:有3根柱子A、B和C,在A上从下往上按照从小到大的顺序放着64个圆盘,以B为中介,把盘子全部移动到C上。移动过程中,要求任意盘子的下面要么没有盘子,要么只能有比它大的盘子。本实例实现了3阶汉诺塔问题的求解,实例运行效果如图
为了将第N个盘子从A移动到C,需要先将第N个盘子上面的N-1个盘子移动到B上,这样才能将第N个盘子移动到C上。同理,为了将第N-1个盘子从B移动到C上,需要将N-2个盘子移动到A上,这样才能将第N-1个盘子移动到C上。通过递归就可以实现汉诺塔问题的求解,其最少移动次数为2n-1。
要点:对于引用类型的变量,在使用之前需要进行初始化,否则会抛出NullPointerException。
编写类HanoiTower,在该类中包含了两个方法,moveDish()方法使用递归来实现问题的求解,main()方法用来进行测试。代码如下:
实现代码:
懒汉式在方法中创建这个类的对象,调用效率不高,但能延时加载。