混沌系统的相同步现象是近几年混沌同步研究的热点,它反映了混沌运动中的有序行为.用分岔树来研究耦合系统相同步的进程,并用Lyapunov指数谱来探讨系统动力学在相同步时从高维混沌向低维混沌过渡的进程.发现了从多个有理同步的时间交替到完全相同步的道路.还 发现了相同步中的混沌抑制及通过倍周期分岔向混沌同步的恢复.此外,研究表明,非对称 耦合可以大大加强耦合系统的相同步,这对实际应用有重要的意义.
title = "耦合混沌系统的相同步: 从高维混沌到低维混沌"
abstract = "混沌系统的相同步现象是近几年混沌同步研究的热点,它反映了混沌运动中的有序行为.用分岔树来研究耦合系统相同步的进程,并用Lyapunov指数谱来探讨系统动力学在相同步时从高维混沌向低维混沌过渡的进程.发现了从多个有理同步的时间交替到完全相同步的道路.还 发现了相同步中的混沌抑制及通过倍周期分岔向混沌同步的恢复.此外,研究表明,非对称 耦合可以大大加强耦合系统的相同步,这对实际应用有重要的意义."
N2 - 混沌系统的相同步现象是近几年混沌同步研究的热点,它反映了混沌运动中的有序行为.用分岔树来研究耦合系统相同步的进程,并用Lyapunov指数谱来探讨系统动力学在相同步时从高维混沌向低维混沌过渡的进程.发现了从多个有理同步的时间交替到完全相同步的道路.还 发现了相同步中的混沌抑制及通过倍周期分岔向混沌同步的恢复.此外,研究表明,非对称 耦合可以大大加强耦合系统的相同步,这对实际应用有重要的意义.
AB - 混沌系统的相同步现象是近几年混沌同步研究的热点,它反映了混沌运动中的有序行为.用分岔树来研究耦合系统相同步的进程,并用Lyapunov指数谱来探讨系统动力学在相同步时从高维混沌向低维混沌过渡的进程.发现了从多个有理同步的时间交替到完全相同步的道路.还 发现了相同步中的混沌抑制及通过倍周期分岔向混沌同步的恢复.此外,研究表明,非对称 耦合可以大大加强耦合系统的相同步,这对实际应用有重要的意义.