我们主要进行关心的就是双重for循环以及其中的交换操作,首先外层循环表示要进行比较的趟数,每一趟都会产生一个最大值或最小值,这也就是冒泡的由来,i的范围限定为i < arr.length - 1,为什么不是i < arr.length呢?由上图可知,当未排序的数组中只有一个元素时,不需要再进行比较了,这时整个数组已经是有序状态了。那么内层循环中,为什么 j 的限制条件 为j < arr.length - 1 - i呢?这个也比较好理解,首先第一次的时候,要把 j 的范围限制在j < arr.length - 1 -0,这样arr[j] > arr[j+1]这样的操作才不会出现数组越界,进行第二趟比较的时候,arr[length -1]位置的元素已经是最大的,不需要再进行比较,这时候就要写成j < arr.length - 1 - 1,总结起来就是j < arr.length - 1 - i

  但是我们进一步探究,上面的代码是存在这样的弊端的:加入第二趟排序之后,数组就已经是有序状态了,那么后面的几趟比较是不是非常多余呢?下面介绍冒泡排序的改进

  代码都是自己在IDE中实现的,直接全部贴过来了,虽然看起来很冗长,其实关键的核心代码就那么几行,我们来看具体的改进方法,采用的方法就是设置一个flag变量,在当前这一趟比较中,如果发生了元素的交换,那么将flag设置为true,如果这趟比较从头到尾都没有进行过交换,那么最终的flag值为false,直接break退出循环。

  用我自己的话理解呢,这个改进就是在之前的单向寻找最大值的基础上,增加了反向寻找最小值,也就是双向冒泡,总体上来讲,鸡尾酒排序要比普通冒泡排序的交换次数要少,但是对于鸡尾酒排序,在算法的时间复杂度和空间复杂度上并没有改进,在完全逆序数组进行排序时,不管是普通的还是改进的,表现得都是非常差。

  代码实现:

  当原始序列为正序时,并且设置了flag变量,那么这时最好的情况为比较n-1次,时间复杂度为O(n)

  当原始序列为逆序时, 对于n个元素,相邻元素均要比较,共有(n-1)次。经过一回合冒泡过程后,最大元素沉淀到最右位置。第二回合, 只剩下(n-1)个元素,只需要比较(n-2)次。依次类推,其他比较次数为(n-3)......21. 所以总共比较次数为n(n-1)/2,而且是固定为这个数目。 至于交换次数,这个取决于初始序列的逆序数。对于数组A[1...n],如果对于iA[j],则称(A[i]A[j])是一个逆序对,序列中逆序对的个数称为逆序数。

  冒泡排序每次交换,只改变了相邻两元素的位置,不影响和其他元素之间的逆序关系,因而,逆序数只减1。所以,冒泡排序交换次数等于初始序列的逆序数。最坏情况下的时间复杂度为O(n^2);

  当原始序列杂乱无序时,冒泡排序的平均时间复杂度为O(n^2)。

  冒泡排序排序过程中需要一个临时变量进行两两交换,所需要的额外空间为1,因此空间复杂度为O(1)。