【高等数学基础进阶】常微分方程-补充 & 多元函数微分学-补充

72 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

一阶微分方程

 

一阶微分方程一般有五种解法:可分离变量的方程;齐次微分方程;一阶线性微分方程;伯努利方程;全微分方程

如果给定的一阶微分方程不属于上述五种标注形式,首先考虑将x,yx,y对调,即认定xxyy的函数,再判断新方程的类型;或者利用简单的变量代换将其化为上述五种类型之一而求解

 

微分方程求解

例8:微分方程ydx+(x3y2)dy=0ydx+(x-3y^{2})dy=0满足条件yx=1=1y \Big|_{x=1}^{}=1的解为y=()y=()

 

这里用偏积分的方式求解

 

y=f(x)y=f(x),即有g(x,y)=0g(x,y)=0,依据题意,由于

yy=1,z3y2x=1 \frac{\partial y}{\partial y}=1,\frac{\partial z-3y^{2}}{\partial x}=1

因此可以用偏积分的方式

dg(x,y)=ydxdg(x,y)=ydxg(x,y)=xy+ϕ(y)代入另一个g(x,y)y=x+ϕ(y)=x3y2ϕ(y)=3y2ϕ(y)=y3 \begin{aligned} dg(x,y)&=ydx\\ \int\limits_{}dg(x,y)&=\int\limits_{}ydx\\ g(x,y)&=xy+\phi(y)\\ &代入另一个\\ \frac{\partial g(x,y)}{\partial y}&=x+\phi'(y)=x-3y^{2}\\ \phi'(y)&=-3y^{2}\\ \phi(y)&=-y^{3} \end{aligned}

因此可得

g(x,y)=xyy3=0 g(x,y)=xy-y^{3}=0

y=0y=x y=0或y=\sqrt{x}

又因为yx=1=1\begin{aligned} y \Big|_{x=1}^{}=1\end{aligned},因此y=xy=\sqrt{x}

 

高阶偏导数

定理:如果函数z=f(x,y)z=f(x,y)的两个混合偏导数在区域DD/某点内连续,则在该区域内/该点

2zxy=2zyx \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}

 

对于二元以上的函数,也可以类似地定义二阶或者更高阶偏导数,且二阶与高阶混合偏导数连续时,混合偏导数的值与求导次序无关

 

全微分

定义:如果函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处的全增量

Δz=f(x0+Δx,y0+Δy)f(x0,y0) \Delta z=f(x_{0}+\Delta x,y_{0}+\Delta y)-f(x_{0},y_{0})

可表示为

Δz=AΔx+BΔy+o(ρ) \Delta z=A \Delta x+B \Delta y+o(\rho)

其中A,BA,BΔx,Δy\Delta x,\Delta y无关,ρ=(Δx)2+(Δy)2\rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}},则称函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处可微,而AΔx+BΔyA \Delta x+B \Delta y称为函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处的全微分,记为

dz=AΔx+BΔy dz=A \Delta x+B \Delta y

如果f(x,y)f(x,y)在区域DD内的每一点(x,y)(x,y)都可微分,则称f(x,y)f(x,y)DD内可微分

 

偏导数计算

先带后求明显比定义法更方便,因为带完后原本二元函数变为一元函数,一元函数看导数是否存在是方便的

 

可导与可微

f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)\begin{aligned} f(x,y)=\left\{\begin{aligned}& \frac{xy}{\sqrt{x^{2}+y^{2}}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned}(0,0)(0,0)点可导,但不可微

 

fx(0,0)=limΔx0Δx0(Δx)2=1fy(0,0)=1 \begin{aligned} f_{x}(0,0)&=\lim\limits_{\Delta x \to 0}\frac{\Delta x \cdot 0}{\sqrt{(\Delta x)^{2}}}=1\\ f_{y}(0,0)&=1 \end{aligned}

显然可导

limΔx0Δy0ΔxΔy(Δx)2+(Δy)20(1Δx+1Δy)(Δx)2+(Δy)2=limΔx0Δy0ΔxΔy(Δx+Δy)(Δx)2+(Δy)2(Δx)2+(Δy)2=limΔx0Δy=kΔx[k(k+1)k2+1] (Δx)2(k2+1)(Δx)20 \begin{aligned} &\lim\limits_{\substack{\Delta x \to 0\\ \Delta y\to 0}}\frac{\frac{\Delta x \Delta y}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}-0-(1\cdot \Delta x+1\cdot \Delta y)}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\\ =&\lim\limits_{\substack{\Delta x \to 0\\ \Delta y\to 0}}\frac{\Delta x \Delta y-(\Delta x+\Delta y)\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{(\Delta x)^{2}+(\Delta y)^{2}}\\ =&\lim\limits_{\substack{\Delta x\to 0\\ \Delta y=k \Delta x}}\frac{[k-(k+1)\sqrt{k^{2}+1}]  (\Delta x)^{2}}{(k^{2}+1)(\Delta x)^{2}}\ne 0 \end{aligned}

显然不可微

 

全微分形式的不变性

设函数z=f(u,v),u=u(x,y),v=v(x,y)z=f(u,v),u=u(x,y),v=v(x,y)都有连续的一阶偏导数,则复合函数z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)]的全微分

dz=zxdx+zyy=zudu+zvdv \begin{aligned} dz&=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}y=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv \end{aligned}

 

即,不论把函数zz看做自变量x,yx,y的函数,还是看做中间变量u,vu,v的函数,函数zz的全微分形式都是一样的

 

隐函数微分法

 

由方程组

{F1(x,y,u,v)=0F2(x,y,u,v)=0 \left\{\begin{aligned}&F_{1}(x,y,u,v)=0\\&F_{2}(x,y,u,v)=0\end{aligned}\right.

确定的隐函数u=u(x,y),v=(x,y)u=u(x,y),v=(x,y)

若要求ux,uy,vx,vy\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}\end{aligned},可以将每个方程分别对xx求偏导数,得出以ux,vx\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\end{aligned}为变量的方程组,可解得ux,vx\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\end{aligned}。同样,将每个方程分别对yy求偏导数,可以得出以uy,vy\begin{aligned} \frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\end{aligned}为变量的方程组,解之可得uy,vy\begin{aligned} \frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\end{aligned}

 

隐函数的偏导

 

如果实在不会用定理2判断隐函数的自变量和因变量,可以根据题目提问看谁是因变量,例如下题,显然是uu,谁是自变量,例如下题,显然是x,yx,y

 

例6:已知u+eu=xyu+e^{u}=xy,求ux,uy,2uxy\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^{2} u}{\partial x \partial y}\end{aligned}