书名: 挑战思维极限(勾股定理的365种证明)

李迈新编著的《挑战思维极限(勾股定理的365种证明)》主要介绍了勾股定理的365种证明方法,并按证法的类型进行归纳、整理和总结,让读者有一个全面而系统的了解

勾股定理是初等几何中遇到的*个比较重要的定理,该定理是许多后续定理的基础。1977年的高考试题中,有一道题目的内容就是“证明勾股定理”,出题人是我国数学家潘承洞。而勾股定理的证明方法也是多种多样,各有特色,国外已经有学者整理出了该定理的300多个证法,而目前列出了近50个证法。本书精选了有代表性的365种证法。这些证法大多只需初中水平,各种思维模式能让读者脑洞大开,挑战思维极限。

《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的365种证明方法,并按证法的类型进行归纳、整理和总结,让读者有一个全面而系统的了解。

书中大多数证法用到的知识不超过初中几何的教学范围,许多证法思路巧妙,别具一格,对提高读者的几何素养大有裨益。本书可以作为广大中学师生和数学爱好者的参考读物。

李迈新,1999年本科毕业于大连理工大学土木工程系2001年至2002年在大连理工大学软件学院攻读计算机软件双学位。2003年至2007年从事软件开发工作2007年以后从事软件和数学方面的教育和培训工作。

证明函数式相等的方法 谷学勤 安徽大学出版社 谷学勤安徽大学出版社(编号: tushu-0269)