向量
如果是某向量空间的基,那么可通过下列做法找到该向量空间中的个
如果是某向量空间的基,那么可通过下列做法找到该向量空间中的个两两正交的向量: 施密特正交化的几何意义是,比如已知中的某向量空间(下图中的蓝色平面)的基为: 那么通过施密特正交化,可借助得到, 就是该向量空间的一个正交基: 下面来解释下施密特正交化是如何推导出来的。 先从特殊的二维向量空间说起。比如知道的一组基,也就是下图中的两个向量: 只要将其中一个向量对另外一个向量进行投影,就可以得到的正交基: 作出在上的投影,其垂线向量就是要求的,即: 上述方法就是二维空间中的施密特正交化,可以总结如下: 上述推导过程并没有被限制在中,所以它也可以完成开头提到的在三维空间中的平面上寻找正交基的任务: 再来看看如何寻找三维向量空间的正交基