离心技术在生物科学,特别是在生物化学和分子生物学研究领域,已得到十分广泛的应用,每个生物化学和分子生物学实验室都要装备多种型式的离心机。离心技术主要用于各种生物样品的分离和制备,生物样品悬浮液在高速旋转下,由于巨大的离心力作用,使悬浮的微小颗粒(细胞器、生物大分子的沉淀等)以一定的速度沉降,从而与溶液得以分离,而沉降速度取决于颗粒的质量、大小和密度。

下式定义,即:

通常离心力常用地球引力的倍数来表示,因而称为相对离心力 “ RCF "。或者用数字乘“g"

颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g" (980cm/sec2),此时“RCF"相对离心力可用下式计算:RCF = 1.1 ∴ 19×10-5×(rpm)2 r

但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“ra v"代替:

一般情况下,低速离心时常以转速“rpm"来表示,高速离心时则以“g" 表示。计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r"不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。因此在报告超离心条件时,通常总是用地心引力的倍数“×g"

变化。科技文献中离心力的数据通常是指其平均值(RCFa v),即离心管中点的离心力。