在数理逻辑中,特别是联合上证明论的时候,一些亚结构逻辑已经作为比常规系统弱的命题演算系统被介入了。同常规系统的不同之处在于它们有更少的结构规则可用:结构规则的概念是基于相继式(sequent)表达,而不是自然演绎的公式化表达。两个重要的亚结构逻辑是相干逻辑和线性逻辑。
这里我们把右手端的Σ采纳为一个单一的命题C(这是直觉主义风格的相继式);但是所有的东西都同样的适用于一般情况,因为所有的操作都发生在十字转门(turnstile)符号的左边。
我们可以演绎出,对于任何B,
在线性逻辑中有重复的假设(hypothese)'被认为'不同于单一的出现,它排除了这两个规则。而相干逻辑只排除后者的规则,因为B明显的与结论无关。
这些是结构规则的基本例子。在应用到常规命题演算的时候,这些规则是没有任何争议的。它们自然的出现于证明理论中,并在那里被首次注意到(在获得一个名字之前)。