奥斯特洛夫斯基定理是一个关于有理数域绝对赋值的定理。于1916年由亚历山大·奥斯特洛夫斯基证明。该定理说明,任何非平凡的有理数Q的绝对赋值要么等价于通常实数域的绝对赋值,要么等价于p进数的绝对赋值。

这是比两绝对赋值结构的拓扑同胚的更严格的定义。

任何域的平凡绝对赋值被定义为:

有时下标∞被写成下标1。

给定素数p,p进赋值的定义如下:

另一个奥斯特洛夫斯基定理[编辑]

另一个奥斯特洛夫斯基定理指出,任何阿基米德的绝对赋值完备域(从代数结构和拓扑结构方面)同构于实数域或复数域。这有时也称为奥斯特洛夫斯基定理。

本页面最后修订于2021年10月21日 (星期四) 14:34。