一、级数法求解l阶勒让德方程

x%3D%5Cpm%201阶勒让德方程,即

%5Cbegin%7Bequation%7D%0A%20%20%20%20%20(1-x%5E2)%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%5CTheta%7D%7B%5Cmathrm%7Bd%7Dx%5E2%7D-2x%5Cfrac%7B%5Cmathrm%7Bd%7D%5CTheta%7D%7B%5Cmathrm%7Bd%7Dx%7D%2Bl(l%2B1)%5CTheta%3D0%0A%20%5Cend%7Bequation%7D%5Clabel%7Beq17%7D

l阶连带勒让德方程

%5Cbegin%7Bequation%7D%0A%20%20%20%20%20(1-x%5E2)%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%5CTheta%7D%7B%5Cmathrm%7Bd%7Dx%5E2%7D-2x%5Cfrac%7B%5Cmathrm%7Bd%7D%5CTheta%7D%7B%5Cmathrm%7Bd%7Dx%7D%2B%5Cleft%5Bl(l%2B1)-%5Cfrac%7Bm%5E2%7D%7B1-x%5E2%7D%5Cright%5D%5CTheta%3D0%5Clabel%7Beq16%7D%0A%20%5Cend%7Bequation%7D

m%3D0的特殊情况,它是一个线性二阶常微分方程,可以使用级数法求解。所谓级数解法,就是在某个任选定的点x_0的邻域上,把待求解表示成为有待定系数的级数,带入方程逐一确定系数。下面就用此方法求l阶勒让德方程在x_0%3D0的邻域上的解。

首先将方程化为线性二阶常微分方程的标准形式:

%5Cbegin%7Bequation%7D%0A%20%20%20%20%20%5CTheta''-%5Cfrac%7B2x%7D%7B1-x%5E2%7D%5CTheta'%2B%5Cfrac%7Bl(l%2B1)%7D%7B1-x%5E2%7D%5CTheta%3D0%0A%20%5Cend%7Bequation%7D

x_0%3D0处,p(0)%3D0q(0)%3Dl(l%2B1),均为有限值,p(x)q(x)在此处必然解析,所以0是方程的一个常点,所以方程具有泰勒展开的形式,即

%5Cbegin%7Bequation%7D%0A%20%20%20%20%5CTheta(x)%3Da_0%2Ba_1x%2Ba_2x%5E2%2B%5Ccdots%2Ba_k%20x%5Ek%2B%5Ccdots%0A%5Cend%7Bequation%7D

于是有

%5Cbegin%7Bequation*%7D%0A%20%20%20%20%5CTheta'(x)%3Da_1%2B2a_2x%2B3a_3x%5E2%2B%5Ccdots%2B(k%2B1)a_%7Bk%2B1%7D%20x%5Ek%2B%5Ccdots%0A%5Cend%7Bequation*%7D%0A

%5Cbegin%7Bequation*%7D%0A%20%20%20%20%5CTheta''(x)%3Da_2%2B6a_3x%2B12a_4x%5E2%2B%5Ccdots%2B(k%2B2)(k%2B1)a_%7Bk%2B2%7D%20x%5Ek%2B%5Ccdots%0A%5Cend%7Bequation*%7D

把它们再带回勒让德方程中,合并同幂次项,有

同幂次项的列表

幂次合并之后各项系数为0,从而得到一系列方程:

%5Cbegin%7Bequation%7D%0A%20%20%20%20%20(k%2B2)(k%2B1)a_%7Bk%2B2%7D%2B(l%5E2%2Bl-k%5E2-k)a_k%3D0%0A%20%5Cend%7Bequation%7D

可以得到一般的递推公式为

%5Cbegin%7Bequation%7D%0A%20%20%20%20%20a_%7Bk%2B2%7D%3D%5Cfrac%7B-l%5E2-l%2Bk%5E2%2Bk%7D%7B(k%2B2)(k%2B1)%7Da_k%0A%20%5Cend%7Bequation%7D

按照递推公式进行具体的系数递推,可以得到

%5Cbegin%7Bequation%7D%0A%20%20%20%20a_%7B2k%7D%3D%5Cfrac%7B(2k-2-l)(2k-4-l)%5Ccdots%20(2-l)(-l)%5Ccdot(l%2B1)(l%2B3)%5Ccdots%20(l%2B2k-1)%7D%7B(2k)!%7Da_0%0A%5Cend%7Bequation%7D%0A

%5Cbegin%7Bequation%7D%0A%20%20%20%20a_%7B2k%2B1%7D%3D%5Cfrac%7B(2k-1-l)(2k-3-l)%5Ccdots%20(1-l)%5Ccdot(l%2B2)(l%2B4)%5Ccdots%20(l%2B2k)%7D%7B(2k%2B1)!%7Da_1%0A%5Cend%7Bequation%7D

这样我们就得到了l阶勒让德方程的解:

%5Cbegin%7Bequation%7D%0A%20%20%20%20%5CTheta(x)%3Da_0%5CTheta_0(x)%2Ba_1%5CTheta_1(x)%3D%5Csum%5E%7B%5Cinfty%7D_%7Bn%3D0%7Da_%7B2n%7D%20x%5E%7B2n%7D%20%2B%5Csum%5E%7B%5Cinfty%7D_%7Bm%3D0%7Da_%7B2m%2B1%7D%20x%5E%7B2m%2B1%7D%20%20%0A%5Cend%7Bequation%7D

我们还需要确认级数%5CTheta_0(x)%5CTheta_1(x)的收敛半径,由递推公式知,二者的收敛半径为:

%5Cbegin%7Bequation%7D%0A%20%20%20%20R%3D%5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%5Cleft%7C%5Cfrac%7Ba_n%7D%7Ba_%7Bn%2B2%7D%7D%5Cright%7C%3D%5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%5Cleft%7C%5Cfrac%7B(n%2B2)(n%2B1)%7D%7B(n-l)(n%2Bl%2B1)%7D%5Cright%7C%3D1%0A%5Cend%7Bequation%7D

因此该级数的收敛半径为1,下面讨论级数在x%3D%5Cpm%201处是否收敛。